Prediksi Harga Emas Indonesia Menggunakan Model CNN-LSTM

Authors

  • Rika Septiana Universitas Sriwijaya
  • Adetya Rielisa Putri Universitas Sriwijaya
  • Wardah Shifa Maharani Universitas Sriwijaya
  • Gina Destia Gultom Universitas Sriwijaya
  • Eka Darmayanti Simanullang Universitas Sriwijaya
  • Ken Dhita Tania Universitas Sriwijaya
  • Allsela Meiriza Universitas Sriwijaya
  • Ahmad Rifai Universitas Sriwijaya

DOI:

https://doi.org/10.23969/infomatek.v27i1.24417

Keywords:

CNN-LSTM, Epoch, Root Mean Square Error, Data historis, Prediksi Harga Emas

Abstract

Harga emas memiliki volatilitas tinggi yang menjadikannya menarik untuk dianalisis secara prediktif. Penelitian ini bertujuan untuk memprediksi harga emas Indonesia dengan kombinasi model Convolutional Neural Network dan Long Short-Term Memory (CNN-LSTM) berdasarkan data historis yang berjumlah 4.434 data dari PT Antam Tbk dari periode 2010 sampai 2025. Model ini dibangun menggunakan lapisan Conv1D (satu dimensi) untuk ekstraksi fitur dan dua lapisan LSTM untuk memahami pola waktu. Pengujian dilakukan dengan tiga variasi jumlah epoch pelatihan, yaitu 50, 100, dan 150, lalu hasilnya dievaluasi menggunakan metrik Root Mean Square Error (RMSE). Model terbaik ditemukan pada epoch 100 dengan nilai RMSE data pelatihan sebesar 5.811,51 dan data uji sebesar 13.236,10. Hasil ini menunjukkan bahwa model CNN-LSTM mampu mengenali pola harga emas lebih baik dibandingkan skenario lain. Dengan demikian, penelitian ini dapat dimanfaatkan untuk membantu para investor dalam mengambil keputusan investasi dan sebagai dasar pengembangan sistem prediksi harga komoditas lainnya.

Downloads

Download data is not yet available.

References

Abbas. (2025). Dataset Harga Emas.

Alhamdani, F. D. S., Marthasari, G. I., & Aditya, C. S. K. (2021). Prediksi Harga Emas Menggunakan Metode Time Series Long Short-Term Memory Neural Network. REPOSITOR, 3(4), 375–386. https://eprints.umm.ac.id/id/eprint/5942

Amini, A., & Kalantari, R. (2024). Gold price prediction by a CNN-Bi-LSTM model along with automatic parameter tuning. PLoS ONE, 19(3 March). https://doi.org/10.1371/journal.pone.0298426

Asnawi, F., Bisono, H., Megantara, A., & Kusrini. (2023). Aplikasi Prediksi Banjir Menggunakan Algoritma XGBoost Berbasis Website. Journal of Economic, Management, Accounting and Technology, 379–389. http://dx.doi.org/10.32500/jematech.v7i2.7644

Billah, M. M., & Das, S. (2021). Analysis and Prediction of Gold Price using CNN and Bi-GRU based Neural Network Model. 24th International Conference on Computer and Information Technology, ICCIT 2021. https://doi.org/10.1109/ICCIT54785.2021.9689880

Boongasame, L., Viriyaphol, P., Tassanavipas, K., & Temdee, P. (2023). Gold-Price Forecasting Method Using Long Short-Term Memory and the Association Rule. Journal of Mobile Multimedia, 19(1), 165–186. https://doi.org/10.13052/jmm1550-4646.1919

Fitriyanto, N., & Kusrini, K. (2025). Optimasi Prediksi Harga Emas Menggunakan CNN-Bi-LSTM dengan Mekanisme Attention dan Bayesian Optimization. Journal of Economic, Management, Accounting and Technology, 8(1), 210–219. https://doi.org/10.32500/jematech.v8i1.8668

Guridno, C., Azimah, A., & Ningsih, S. (2024). Jurnal Sistem Informasi Bisnis ( JUNSIBI) ANALISIS HYBRID METODE CNN DAN LSTM DALAM MEDIA BERITA ONLINE INDONESIA PENULIS 1). 5(1), 86–101. https://doi.org/10.55122/junsibi.v5i1.1202

Handayani, S., Taslim, & Toresa, D. (2022). Convolutional Neural Network Long Short Term Memory Untuk Prediksi Harga Emas Indonesia. Indonesian Journal of Computer Science. https://doi.org/https://doi.org/10.33022/ijcs.v11i3.3074

Julianto, M. F., Iqbal, M., Hidayat, W. F., & Malau, Y. (2024). PERBANDINGAN PENERAPAN ALGORITMA DEEP LEARNING DALAM PREDIKSI HARGA EMAS. INTI Nusa Mandiri, 19(1), 71–76. https://doi.org/10.33480/inti.v19i1.5559

Liang, Y., Lin, Y., & Lu, Q. (2022). Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Systems with Applications, 206, 117847. https://doi.org/10.1016/J.ESWA.2022.117847

Purwanti, Y. (2022). Analysis of the Influence of Gold Price, Rupiah Exchange Rate and Interest Rate on West Java Inflation Persistence Degrees. 1(1), 43–52. https://doi.org/10.21787/govstat.1.1.2022.43-52

Qiu, C., Zhang, Y., Qian, X., Wu, C., Lou, J., Chen, Y., Xi, Y., Zhang, W., & Gong, Z. (2024). A Two-stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3408837

Salim, M., & Djunaidy, A. (2024). Development of a CNN-LSTM Approach with Images as Time-Series Data Representation for Predicting Gold Prices. Procedia Computer Science, 234, 333–340. https://doi.org/10.1016/j.procs.2024.03.007

Santika, I. W. K. G., Sa’adah, S., & Yunanto, P. E. (2021). Prediksi harga emas menggunakan Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM). Universitas Telkom, S1 Informatika. https://repository.telkomuniversity.ac.id/pustaka/172951/prediksi-harga-emas-menggunakan-convolutional-neural-network-long-short-term-memory-cnn-lstm-.html

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing Journal, 90. https://doi.org/10.1016/j.asoc.2020.106181

Tholib, A., Agusmawati, N. K., & Khoiriyah, F. (2023). PREDIKSI HARGA EMAS MENGGUNAKAN METODE LSTM DAN GRU. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3). https://doi.org/10.23960/jitet.v11i3.3250

Vidal, A., & Kristjanpoller, W. (2020). Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 157. https://doi.org/10.1016/j.eswa.2020.113481

Yan, W., & Elbushra, M. (2024). Forecasting Sudan Gold Prices with a Hybrid Deep Learning Approach. 2024 International Conference on Cloud and Network Computing (ICCNC), 71–78. https://doi.org/10.1109/ICCNC63989.2024.00020

Yao, J., Wang, J., Wang, B., Liu, B., & Jiang, M. (2024). A Hybrid CNN-LSTM Model for Enhancing Bond Default Risk Prediction. https://ashpress.org/index.php/jcts/article/view/79/56

Zhang, J., & Lei, Y. (2022). Deep Reinforcement Learning for Stock Prediction. Scientific Programming, 2022. https://doi.org/10.1155/2022/5812546

Downloads

Published

2025-06-28

How to Cite

Septiana, R., Putri, A. R., Maharani, W. S., Gultom, G. D., Simanullang, E. D., Tania, K. D., … Rifai, A. (2025). Prediksi Harga Emas Indonesia Menggunakan Model CNN-LSTM. Infomatek, 27(1), 131–138. https://doi.org/10.23969/infomatek.v27i1.24417

Issue

Section

Articles