Prediksi Harga Cabai Musiman Menggunakan Model LSTM di Jawa Tengah
DOI:
https://doi.org/10.23969/infomatek.v27i2.26460Keywords:
Cabai, cuaca, fluktuasi harga, LSTM, model prediksiAbstract
Penelitian ini mengembangkan model prediksi harga cabai musiman di Jawa Tengah menggunakan algoritma Long Short-Term Memory (LSTM) yang mengintegrasikan data harga harian dan data cuaca, termasuk curah hujan, suhu udara, dan kelembapan relatif. Model ini dirancang untuk memprediksi fluktuasi harga cabai yang dipengaruhi oleh faktor musiman dan kondisi cuaca, yang sering menyebabkan ketidakstabilan harga. Hasil eksperimen menunjukkan bahwa model LSTM berhasil menghasilkan prediksi dengan nilai RMSE 512,83, MAE 387,49, dan R² 0,861, yang mengindikasikan kemampuan model dalam menangkap pola harga yang dipengaruhi oleh faktor eksternal. Keunggulan utama LSTM dibandingkan dengan model lain seperti Support Vector Regression (SVR) dan Random Forest terletak pada kemampuannya untuk menangkap korelasi temporal dan pola musiman dalam data deret waktu. Implikasi praktis dari penelitian ini meliputi penggunaan model untuk membantu petani dalam menentukan waktu tanam dan panen yang optimal serta bagi pemerintah daerah dalam mengatur distribusi dan pengendalian harga cabai untuk mengurangi dampak inflasi pangan dan meningkatkan ketahanan pangan. Penelitian ini membuka peluang untuk penelitian lanjutan yang dapat mengembangkan model yang lebih kompleks dan mengakomodasi faktor eksternal lainnya.
Downloads
References
Abdel-salam, M., Kumar, N., & Mahajan, S. (2024). A proposed framework for crop yield prediction using hybrid feature selection approach and optimized machine learning. Neural Computing and Applications, 36(33), 20723–20750. https://doi.org/10.1007/s00521-024-10226-x
Acasamoso, D. (2024). Classification of Medicinal Plant Using an Optimized Deep Learning Method. 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), 267–270. https://doi.org/10.1109/ICTC62082.2024.10827610
Arisandi, A., Gaffar, I., & Yanti, R. W. (2025). Akurasi Nilai Peramalan Harga Cabai Rawit Merah di Kota Makassar dengan Metode Single Exponential Smoothing. 7(1), 1–5. https://doi.org/10.31605/jomta.v7i1.4780
Bichri, H., Chergui, A., & Hain, M. (2024). Investigating the Impact of Train / Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets. International Journal of Advanced Computer Science and Applications, 15(2), 331–339. https://doi.org/10.14569/IJACSA.2024.0150235
Elshewey, A. M., Jamjoom, M. M., & Alkhammash, E. H. (2025). An enhanced CNN with ResNet50 and LSTM deep learning forecasting model for climate change decision making. Scientific Reports, 15(1), 1–32. https://doi.org/10.1038/s41598-025-97401-9
Gupta, A., Stead, T., & Ganti, L. (2024). Determining a Meaningful R-squared Value in Clinical Medicine. Academic Medicine & Surgery. https://doi.org/10.62186/001c.125154
GV, A., KM, A., SK, R., & KJ, N. (2024). Predictive Analysis of Agricultural Prices Using AI and Machine Learning. International Research Journal of Modernization in Engineering Technology and Science, 12, 1350–1354. https://doi.org/10.56726/IRJMETS65127
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Huan, J., Chen, B., Xu, X. G., Li, H., Li, M. B., & Zhang, H. (2021). River Dissolved Oxygen Prediction Based on Random Forest and LSTM. Applied Engineering in Agriculture, 37(5), 901–910. https://doi.org/10.13031/aea.14496
Ikhwan Fahruddin, Y., Kurniawan, R., & Arie Wijaya, Y. (2024). Penerapan Algoritma Regresi Linear Pada Data Harga Komoditi Di Pasar Indihiang. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1614–1620. https://doi.org/10.36040/jati.v8i2.9053
Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: An ASA Data Science Journal, 15(4), 531–538. https://doi.org/https://doi.org/10.1002/sam.11583
Kong, Y., Wang, Z., Nie, Y., Zhou, T., Zohren, S., Liang, Y., Sun, P., & Wen, Q. (2024). Unlocking the Power of LSTM for Long Term Time Series Forecasting.
Machine, M., Time, L. U., & Imputation, S. (2024). Machine Learning-Based Univariate Time Series Imputation Method for Estimating Missing Values in Non- Stationary Data. 21(1), 307–320. https://doi.org/10.20956/j.v21i1.36468
Manogna, R. L., Dharmaji, V., & Sarang, S. (2025). A novel hybrid neural network-based volatility forecasting of agricultural commodity prices: empirical evidence from India. Journal of Big Data, 12(1), 85. https://doi.org/10.1186/s40537-025-01131-8
Martins, T. M., & Neves, R. F. (2020). Applying genetic algorithms with speciation for optimization of grid template pattern detection in financial markets. Expert Systems with Applications, 147. https://doi.org/10.1016/j.eswa.2020.113191
Min, Y., Kim, Y. R., Hyon, Y., Ha, T., Lee, S., Hyun, J., & Lee, M. R. (2025). RNN and GNN based prediction of agricultural prices with multivariate time series and its short-term fluctuations smoothing effect. Scientific Reports, 15(1), 13681. https://doi.org/10.1038/s41598-025-97724-7
Monthly, A., Reviewed, P., Indexed, S., Journal, O. A., Priyatharsini, R. C. D., Raman, B. V., & Saipraneeth, C. M. N. V. L. (2025). Crop Yield Predication using Random Forest Regression Algorithm. 14(4). https://doi.org/10.15680/IJIRSET.2025.1404450
olena, Kotykova. Mykola, Babych. Anna, Lagodzinska. Anna, T. (2022). Agricultural and Resource Economics : International Scientific E-Journal. Agricultural and Resource Economics: International Scientific E -Journal, 8(2), 30–49. https://doi.org/doi.org/10.51599/are.2025.11.01.07
Ozden, C. (2023). Comparative Analysis of CNN, LSTM And Random Forest for Multivariate Agricultural Price Forecasting. Black Sea Journal of Agriculture, 6. https://doi.org/10.47115/bsagriculture.1304625
Patro, S. G. K., & sahu, K. K. (2015). Normalization: A Preprocessing Stage. Iarjset, 2(3), 20–22. https://doi.org/10.17148/iarjset.2015.2305
Shi, J., Wang, S., Qu, P., & Shao, J. (2024). Time series prediction model using LSTM-Transformer neural network for mine water inflow. Scientific Reports, 14(1), 1–16. https://doi.org/10.1038/s41598-024-69418-z
Subhitcha, S., Vincent, R., Sivaraman, A. K., Tee, K. F., Velayutham, K., & Sivaraman, A. R. (2025). Spatio-temporal modeling of climate change impacts on farming using GNN-LSTM with attention and ensemble learning. International Journal of Information Technology. https://doi.org/10.1007/s41870-025-02715-6
Tawakuli, A., Havers, B., Gulisano, V., Kaiser, D., & Engel, T. (2024). Survey:Time-series data preprocessing: A survey and an empirical analysis. Journal of Engineering Research. https://doi.org/https://doi.org/10.1016/j.jer.2024.02.018
Veri Arinal, M. A. (2023). Penerapan Regresi Linear Untuk Prediksi Harga Beras Di Indonesia. Jurnal Sains Dan Teknologi, 5(1), 341–346. https://doi.org/10.55338/saintek.v5i1.1417
Wahyuni, T. S., Satriani, R., & Mandamdari, A. N. (2024). Pengaruh Fluktuasi Harga Cabai Rawit Merah Terhadap Inflasi di Kabupaten Banyumas. Mimbar Agribisnis : Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 10(2), 1866. https://doi.org/10.25157/ma.v10i2.13684
Wang, H., Zhang, Y., Liang, J., & Liu, L. (2022). DAFA-BiLSTM: Deep Autoregression Feature Augmented Bidirectional LSTM network for time series prediction. Neural Networks : The Official Journal of the International Neural Network Society, 157, 240–256. https://doi.org/10.1016/j.neunet.2022.10.009
Xu, C., Coen-Pirani, P., & Jiang, X. (2023). Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis. Cancers, 15. https://doi.org/10.3390/cancers15071969
Zhang, X., Wang, T., & Lai, Z. (2024). A Feature-Weighted Support Vector Regression Machine Based on Hilbert–Schmidt Independence Criterion Least Absolute Shrinkage and Selection Operator. Information (Switzerland), 15(10). https://doi.org/10.3390/info15100639
Аkanova, A., & Kaldarova, M. (2020). Impact of the compilation method on determining the accuracy of the error loss in neural network learning. Technology Audit and Production Reserves. https://doi.org/10.15587/2706-5448.2020.217613



