Perbandingan Metode Newton Raphson dan Metode Steffensen dalam Penentuan Akar Fungsi Non-Linier Menggunakan Pemrograman Hypertext Preprocessor

Authors

  • Nikmat Rahmatullah, Amrullah Universitas Mataram
  • Gilang Primajati, Sudi Prayitno Universitas Mataram

DOI:

https://doi.org/10.23969/jp.v10i02.26961

Keywords:

Root of Function, Newton-Raphson Method, Steffensen Method, Hypertext Preprocessor

Abstract

Mathematical problems frequently arise in various scientific fields, particularly in determining the roots of nonlinear functions. Since complex nonlinear functions are often difficult to solve analytically, numerical methods are commonly used as an alternative approach. This article aims to compare the number of iterations and the error levels produced by the Newton-Raphson and Steffensen methods. The tests were conducted on three types of functions, polynomial functions of the form a1xn+a2xn-1+...+amx0, exponential functions of the form aebx+d+t and trigonometric functions of the form a0sin(b0x)+a1cos(b1x)+a2. For each type, three different functions were used, and each was tested with three different initial guesses. The results show that, in terms of iteration count, the Newton-Raphson method outperformed the Steffensen method for polynomial and trigonometric functions by 84% and 62%, respectively, while for exponential functions, the Steffensen method was superior by 12%. In terms of error, the Newton-Raphson method yielded smaller errors across all function types, with improvements of 92%, 84%, and 98% for polynomial, exponential, and trigonometric functions, respectively, compared to the Steffensen method.

Downloads

Download data is not yet available.

References

Martins, E. M., Ferreira, G. C. G., & Gonçalves, T. E. (2022). A slight generalization of Steffensen Method for Solving Non Linear Equations. arXiv preprint arXiv:2209.14474. https://doi.org/10.48550/arXiv.2209.14474.

Mumtazi, Y., Amrullah, Hikmah, N., & Prayitno, S. (2024). Comparison of Steffensen and Secant Methods in Determining Non- Linear Function Roots Using Hypertext Preprocessor ( PHP ) Programmer. Journal of Education, Science, Geology, and Geophysics, 5(3), 418–424. https://doi.org/https://doi.org/10.29303/geoscienceed.v5i3.393.

Mustika, S. N., & Noerhayati, E. (2020). Pemodelan persamaan nonlinier miniatur pintu air terhadap debit air irigasi. Jurnal Teknologi Elektro dan Kejuruan, 33(1), 37-44. https://journal2.um.ac.id/index.php/tekno/article/view/15632.

Putra, H. A. A. (2017). Metode Iterasi Tanpa Turunan Yang Optimal Berdasarkan Metode Steffensen Untuk Menyelesaikan Persamaan Nonlinear (Doctoral dissertation, Universitas Brawijaya). https://repository.ub.ac.id/id/eprint/4913/.

Pramudya, D., Kurniati, N., & Bella, C. (2022). Model Persamaan Non Linear Dalam Matematika Bisnis. Jurnal Dunia Ilmu, 2(3), 1–10. http://duniailmu.org/index.php/repo/article/view/99.

Romemendia., & Bustami. (2014). Modifikasi metode Halley berdasarkan metode Osada dan Euler Chebyshev untuk akar ganda. JOM FMIPA, 1(2), 231-240. https://www.neliti.com/publications/183639/modifikasi-metode-halley-berdasarkan-metode-osada-dan-euler-chebyshev-untuk-akar.

Salwa, H. Y., Syaharuddin, Sulistina, L., Nurmayanti, E., Rahmatin, A., & Negara, H. R. P. (2022). Perbandingan Metode Newton Midpoint Halley, Metode Olver dan Metode Chabysave Dalam Penyelesaian Akar-Akar Persamaan Non-Linear. Indonesian Journal of Engineering, 3(1), 1–15. https://repository.uinmataram.ac.id/3031/.

Sapari, J., & Bahri, S. (2019). Penentuan Akar-akar Persamaan Nonlinier dengan Metode Iterasi Baru. Jurnal Matematika UNAND, 4(4), 49-56. https://doi.org/10.25077/jmu.4.4.49-56.2015.

Subarinah, S. (2022). Metode numerik. Mataram: FKIP Universitas Mataram Press.

Sujaya, K. A., Sudi Prayitno, Nani Kurniati, & Nyoman Sridana. (2024). Efektivitas Metode Brent dalam Penyelesaian Masalah Break Even Point Menggunakan Pemrograman Pascal. Mandalika Mathematics and

Downloads

Published

2025-07-02